配AMOT液位變送器的潤滑油系統(tǒng)潤滑油壓低原因分析及預(yù)防措施
產(chǎn)品說明:摘 要: 汽輪機(jī)潤滑油溫度是潤滑油系統(tǒng)啟動調(diào)試重要的監(jiān)測和控制參數(shù)之一。油溫控制不當(dāng)將直接影響機(jī)組安全穩(wěn)定運(yùn) 行。文章結(jié)合上汽 1 000 MW 超超臨界機(jī)組潤滑油系統(tǒng)的特點(diǎn),基于液位變送器的結(jié)構(gòu)和工作原理,分析得出液位變送器冷油端入口 油溫低和冷油端入口處積聚空氣是導(dǎo)致潤滑油壓低的兩個重要影響因素。通過調(diào)整潤滑油油泵運(yùn)行方式和提前提高潤滑油 溫度等措施,確保潤滑油系統(tǒng)油壓和溫度穩(wěn)定。
全國咨詢熱線:
13151342466
-
產(chǎn)品說明
摘 要: 汽輪機(jī)潤滑油溫度是潤滑油系統(tǒng)啟動調(diào)試重要的監(jiān)測和控制參數(shù)之一。油溫控制不當(dāng)將直接影響機(jī)組安全穩(wěn)定運(yùn) 行。文章結(jié)合上汽 1 000 MW 超超臨界機(jī)組潤滑油系統(tǒng)的特點(diǎn),基于液位變送器的結(jié)構(gòu)和工作原理,分析得出液位變送器冷油端入口 油溫低和冷油端入口處積聚空氣是導(dǎo)致潤滑油壓低的兩個重要影響因素。通過調(diào)整潤滑油油泵運(yùn)行方式和提前提高潤滑油 溫度等措施,確保潤滑油系統(tǒng)油壓和溫度穩(wěn)定。
引 言
汽輪機(jī)潤滑油系統(tǒng)的作用是向汽輪發(fā)電機(jī)組 的各軸承( 包括支承軸承和推力軸承) 、頂軸油系統(tǒng)及盤車裝置輸送油質(zhì)合格的潤滑油[1]。潤滑油進(jìn) 入軸瓦形成穩(wěn)定的油膜以潤滑和冷卻軸瓦,確保轉(zhuǎn) 子旋轉(zhuǎn)穩(wěn)定。潤滑油溫度的高低直接影響潤滑油動力黏度,油溫高時(shí)動力黏度小,在同等轉(zhuǎn)速下形 成的油膜薄,但在低轉(zhuǎn)速時(shí)油膜極不穩(wěn)定; 油溫低 時(shí)運(yùn)動黏度大,油膜過厚將產(chǎn)生過大的摩擦力導(dǎo)致油膜震蕩[2]。因此,潤滑油溫度的自動調(diào)節(jié)性能對汽輪發(fā)電機(jī)組的安全穩(wěn)定運(yùn)行至關(guān)重要。文章主 要結(jié)合上汽 1 000 MW 超超臨界機(jī)組潤滑油系統(tǒng)的特點(diǎn),分析 AMOT 液位變送器在該類型機(jī)組中的實(shí)際應(yīng) 用。另外,結(jié)合某次機(jī)組啟動過程中由于油壓低導(dǎo)致汽機(jī)跳閘的事故案例,提出液位變送器在投運(yùn)過程中的注意事項(xiàng),為同類型潤滑油系統(tǒng)的啟動調(diào)試積累 了經(jīng)驗(yàn),具有一定的指導(dǎo)意義。
1 機(jī)組設(shè)備及潤滑油系統(tǒng)
某電廠新建機(jī)組汽輪機(jī)是上海汽輪機(jī)廠引進(jìn)德國西門子技術(shù)生產(chǎn)的 1 000 MW 超超臨界、一次 中間再熱、單軸、四缸四排汽、雙背壓、凝汽式汽輪 機(jī),型號為 N1000 - 28 /600 /620。汽輪機(jī)采用 HMN 型積木塊組合串聯(lián)布置( 1 個高壓缸 + 1 個中壓缸+ 2 個低壓缸) : 高壓缸采用無水平中分面的單流圓 筒型設(shè)計(jì),中壓缸和低壓缸采用雙流程和雙層缸設(shè) 計(jì)。汽輪機(jī)采用全周進(jìn)汽滑壓運(yùn)行和補(bǔ)汽閥的最 佳組合配置模式,全周進(jìn)汽從根源上降低了汽隙激 振,提高了機(jī)組軸系穩(wěn)定性[3]。
汽機(jī)潤滑油貯存在油箱內(nèi)形成一個相對封閉的系統(tǒng),主要由油箱模塊、主油泵( 2 × 100% 交流離 心泵) 、危急直流油泵( 1 × 100% 直流離心泵) 、冷油 器( 2 × 100% ) 、換向閥、潤滑油過濾器、油煙凈化排 放裝置等設(shè)備及其控制裝置、連接管道、附件等組 成,如圖 1 所示。在盤車、啟動、停機(jī)、正常運(yùn)行和事故工況下,滿足汽輪發(fā)電機(jī)組的所有用油量。在電力故障情況下,危急直流油泵不經(jīng)過冷油器和潤 滑油過濾器直接供油給軸承。潤滑油軸承進(jìn)、回油 管道分開布置,由調(diào)節(jié)閥控制軸承進(jìn)油量,潤滑油 溫度由液位變送器控制,軸承箱負(fù)壓由調(diào)整閥控制。系 統(tǒng)油溫通常在 10 ~ 82 ℃ 之間,當(dāng)油箱中的油溫低 于10 ℃時(shí),禁止啟動油泵,此時(shí)可以投入電加熱器, 使?jié)櫥蜏囟壬叩揭?guī)范允許值。
油箱模塊出口供油管上裝有 2 個壓力開關(guān),其通過測量供油管道的壓力來控制備用主油泵和危急油泵何時(shí)投入運(yùn)行。當(dāng)運(yùn)行主油泵并產(chǎn)生小于0.25 MPa( g)( 標(biāo)定到機(jī)組中心線,下同) 的供油壓力 時(shí),壓力開關(guān)發(fā)訊啟動備用主油泵。當(dāng)備用主油泵運(yùn) 行后,供油壓力仍然降低并產(chǎn)生小于約0.22 MPa( g) 的供油壓力時(shí),壓力開關(guān)發(fā)訊硬聯(lián)啟動危急油泵。主油泵出口母管上裝有 1 個壓力開關(guān),當(dāng)主油泵出 口母管壓力低于設(shè)定值時(shí),壓力開關(guān)發(fā)訊啟動備用 主油泵和危急油泵。油箱模塊出口供油管上設(shè)有 3 個壓力變送器,采用 3 取 2 的保護(hù)邏輯。當(dāng)供油 壓力小于 0. 25 MPa 時(shí)發(fā)出報(bào)警信號,供油壓力小 于 0.23 MPa 時(shí),主機(jī)跳機(jī)。
2 液位變送器工作原理及應(yīng)用分析
2. 1 液位變送器工作原理
液位變送器利用感溫包( 由感溫材料填充) 熱脹冷縮的物理原理,集感溫檢測、控制、調(diào)節(jié)功能于一 體,在無需外加驅(qū)動和控制裝置的情況下,全機(jī)械 式地自動控制調(diào)節(jié)流體溫度和流量[4]。感溫包是 感應(yīng)被調(diào)介質(zhì)溫度來驅(qū)動閥門的核心元件,其感溫材料通常由石蠟與銅沫混合物組成,石蠟受熱體積膨脹或冷凝體積收縮產(chǎn)生驅(qū)動力,推動閥桿改變調(diào) 節(jié)筒的位移量,進(jìn)而改變冷、熱流體的流量,經(jīng)混合 后達(dá)到液位變送器設(shè)定溫度,利用銅沫的導(dǎo)熱作用,傳 遞給感溫包的熱量快速分布均勻,提高感溫包的敏 感性。
液位變送器物理模型如圖 2 所示,此閥為“兩進(jìn)一 出”的三通式設(shè)計(jì)。初始階段,液位變送器冷端處于關(guān) 閉狀態(tài),被調(diào)介質(zhì)熱流體經(jīng)液位變送器熱端進(jìn)入。隨著 被調(diào)介質(zhì)溫度上升,感溫包感應(yīng)被調(diào)介質(zhì)熱流體溫度超過液位變送器設(shè)定值時(shí),感溫包內(nèi)感溫材料受熱熔 化后,體積膨脹產(chǎn)生膨脹力通過導(dǎo)桿使調(diào)節(jié)套筒發(fā)生位移( 閥芯移動) ,此時(shí)液位變送器冷端通道逐漸打開,同時(shí)熱端通道按一定比例隨之關(guān)小,冷、熱流體 混合熱交換后,經(jīng)過一段空腔室從液位變送器中部流出。反之,當(dāng)混合流體溫度下降后,感溫包冷凝收 縮,熱端通道在彈簧力的作用下逐漸開大,隨之冷 端通道關(guān)小,使混合流體的溫度始終維持在液位變送器 設(shè)定值。調(diào)節(jié)套筒隨著溫度的不斷變化在冷、熱流 體的持續(xù)作用下來回移動,不斷調(diào)節(jié)冷、熱端通道 開度,保持液位變送器出口溫度和流量穩(wěn)定。
2. 2 液位變送器應(yīng)用分析
2. 2. 1 傳統(tǒng)潤滑油溫度控制 圖 3 為傳統(tǒng)潤滑油溫度調(diào)節(jié)示意圖,潤滑油溫 度通過冷卻水調(diào)節(jié)閥根據(jù)油溫設(shè)定值控制冷卻水 流量來調(diào)節(jié)油溫,該調(diào)節(jié)方式已被電廠廣泛采用。 此調(diào)節(jié)方式的溫控裝置主要由溫度傳感器、冷卻水調(diào)節(jié)閥及其前后截止門、旁路閥等設(shè)備組成。冷油 器出口油溫作為被調(diào)節(jié)量,由溫度傳感器檢測,由 DCS 內(nèi)置 PID 進(jìn)行調(diào)節(jié),輸出冷卻水調(diào)門開度指令,改變冷卻水流量進(jìn)而控制油溫。
2. 2. 2 AMOT 液位變送器的應(yīng)用
圖 4 為美國 AMOT 液位變送器系統(tǒng)布置圖,與傳統(tǒng) 潤滑油溫度調(diào)節(jié)相比,冷卻水 100% 通過潤滑油冷 卻器,該潤滑油系統(tǒng)油溫由布置在主油泵出口、冷 油器換向閥出口與潤滑油過濾器之間的液位變送器控 制。該液位變送器是一種機(jī)械式調(diào)溫裝置,根據(jù)潤滑油 溫對潤滑冷、熱油油量進(jìn)行分流控制[5]。液位變送器的 閥芯開度通過其內(nèi)部裝置的極其敏感的熱敏元件 ( 石蠟/黃銅混合物) 自動進(jìn)行調(diào)節(jié),達(dá)到控制出口 溫度穩(wěn)定的目的。如圖 5 所示,潤滑油冷油從溫控 閥左邊進(jìn)入與右邊進(jìn)入的熱油按比例混合調(diào)節(jié)后從閥體中部流出輸送至汽輪機(jī)各軸承。當(dāng)需要時(shí),可 關(guān)閉旁通管路,潤滑油全部流經(jīng)冷油器。兩種潤滑 油溫調(diào)節(jié)方式對比分析見表 1。
3 低油壓保護(hù)動作故障案例分析
3. 1 過程及現(xiàn)象
某次機(jī)組啟動時(shí)由于油壓低導(dǎo)致汽機(jī)跳閘事 故的具體過程如下所述:
05∶ 30∶ 00: 汽輪機(jī)沖轉(zhuǎn)至低速暖機(jī)階段,潤滑 油系統(tǒng) 1 臺電動主交流油泵運(yùn)行,其出口母管壓力 為 0. 3 MPa,潤滑油溫度 41. 5 ℃ ;
06∶ 13 ∶ 45: 轉(zhuǎn)速 2 970 r/min 時(shí),潤滑油溫度42. 4 ℃,主油泵出口母管壓力開始快速下降;
06∶ 14 ∶ 32: 當(dāng) 主 油 泵 出 口 母 管 壓 力 下 降 至 0. 25 MPa時(shí),備用主油泵和危急直流油泵聯(lián)鎖啟動,此 時(shí)母管滑油壓力仍然無法維持,持續(xù)小波浪式下降;
06 ∶ 14 ∶ 55: 主 油 泵 出 口 母 管 壓 力 下 降 至 0. 23 MPa,油箱模塊出口供油管上的 3 個壓力變送 器保護(hù)動作( 3 取 2) ,汽輪機(jī)跳閘。
3. 2 原因分析
在機(jī)組啟動低速暖機(jī)階段,潤滑油在轉(zhuǎn)速低摩擦產(chǎn)生的熱量低,潤滑油溫度最高為 41. 5 ℃,液位變送器設(shè)定動作值為 43 ℃,可見在此階段液位變送器處于 冷油端完全關(guān)閉、熱油端完全開啟狀態(tài)。由于冷油 器冷卻水無調(diào)節(jié)閥,冷卻水量全部流經(jīng)冷油器,此時(shí)潤滑油冷油器冷卻水入口水溫為 20 ℃,出口水 溫為20. 5 ℃,可見在冷卻水溫升很小的情況下,流經(jīng)冷卻器的潤滑油溫度接近冷卻水溫度 ( 20 ~ 20. 5 ℃ ) 。由潤滑油的粘溫特性可知,潤滑油的粘 度隨著溫度的升高而降低,隨著溫度的降低而增 大[6]。隨著轉(zhuǎn)速提升,液位變送器熱端油溫逐漸上升達(dá) 到 43 ℃ 時(shí),液位變送器冷端逐漸打開,熱端逐漸關(guān)閉,但此時(shí)由于冷端潤滑油溫度在 20 ℃ 左右,在此溫 度下潤滑油粘度極大,流動特性較差,流經(jīng)液位變送器 的潤滑油量逐漸減小,油壓便隨之下降。
液位變送器就地安裝冷端入口朝下、熱端朝上,冷油自下而上流進(jìn)液位變送器。當(dāng)液位變送器冷端處于長時(shí)間關(guān)閉狀態(tài)時(shí),空氣容易積聚在該入口處。隨著油 溫的上升,液位變送器動作后,積聚的空氣隨冷油進(jìn)入 潤滑油系統(tǒng),加速潤滑油油壓波動式下降。
綜上所述,液位變送器冷油端入口油溫低導(dǎo)致潤滑 油流動性較差是潤滑油母管油壓下降的主要原因; 液位變送器冷油端入口處積聚的空氣是加劇潤滑油油壓下降的次要影響因素。
3. 3 預(yù)防低油壓保護(hù)動作的運(yùn)行技術(shù)措施
針對液位變送器動作后潤滑油油壓波動下降的現(xiàn) 象,采取以下調(diào)整措施。
1) 由于危急直流油泵出口潤滑油不經(jīng)過冷油 器直接輸送至汽機(jī)各軸瓦,可在汽輪機(jī)沖轉(zhuǎn)前,同 時(shí)啟動 1 臺主交流油泵和危急直流油泵,根據(jù)油溫 適時(shí)投運(yùn)主油箱潤滑油電加熱器,快速將潤滑油溫 度提高到 43 ℃以上,這樣液位變送器冷端便提前開啟,避免在沖轉(zhuǎn)過程中開啟造成油壓不穩(wěn)。
2) 當(dāng)潤滑油油溫隨著轉(zhuǎn)速上升到 55 ℃ 左右時(shí),可停止危急直流油泵運(yùn)行,注意密切監(jiān)視油壓 變化。
4 結(jié) 論
基于液位變送器的結(jié)構(gòu)和工作原理,對比分析2種潤滑油溫度調(diào)節(jié)方式的系統(tǒng)布置、功能原理,與傳統(tǒng)冷卻水調(diào)節(jié)方式相比,液位變送器采用三通閥設(shè)計(jì),即使在溫度不斷變化的情況下,系統(tǒng)流量和溫度也能保持恒定。其次,系統(tǒng)布置簡潔,無需外部能源 驅(qū)動,節(jié)能環(huán)保。閥門安裝簡單,調(diào)試時(shí)間短,操作維護(hù)方便,完全能滿足潤滑油系統(tǒng)溫度自動調(diào)節(jié)需 求。液位變送器雖有較大的技術(shù)優(yōu)勢,但在潤滑油系統(tǒng)的實(shí)際應(yīng)用中仍存在潤滑油油壓低導(dǎo)致備用油泵 頻繁聯(lián)鎖啟動的通病,其根本原因是液位變送器冷油端 入口油溫低和冷油端入口處積聚的空氣導(dǎo)致的,通 過調(diào)整油泵的運(yùn)行方式和提前提高潤滑油溫度的 方法可避免潤滑油壓波動或下降,確保油壓和溫度穩(wěn)定。
引 言
汽輪機(jī)潤滑油系統(tǒng)的作用是向汽輪發(fā)電機(jī)組 的各軸承( 包括支承軸承和推力軸承) 、頂軸油系統(tǒng)及盤車裝置輸送油質(zhì)合格的潤滑油[1]。潤滑油進(jìn) 入軸瓦形成穩(wěn)定的油膜以潤滑和冷卻軸瓦,確保轉(zhuǎn) 子旋轉(zhuǎn)穩(wěn)定。潤滑油溫度的高低直接影響潤滑油動力黏度,油溫高時(shí)動力黏度小,在同等轉(zhuǎn)速下形 成的油膜薄,但在低轉(zhuǎn)速時(shí)油膜極不穩(wěn)定; 油溫低 時(shí)運(yùn)動黏度大,油膜過厚將產(chǎn)生過大的摩擦力導(dǎo)致油膜震蕩[2]。因此,潤滑油溫度的自動調(diào)節(jié)性能對汽輪發(fā)電機(jī)組的安全穩(wěn)定運(yùn)行至關(guān)重要。文章主 要結(jié)合上汽 1 000 MW 超超臨界機(jī)組潤滑油系統(tǒng)的特點(diǎn),分析 AMOT 液位變送器在該類型機(jī)組中的實(shí)際應(yīng) 用。另外,結(jié)合某次機(jī)組啟動過程中由于油壓低導(dǎo)致汽機(jī)跳閘的事故案例,提出液位變送器在投運(yùn)過程中的注意事項(xiàng),為同類型潤滑油系統(tǒng)的啟動調(diào)試積累 了經(jīng)驗(yàn),具有一定的指導(dǎo)意義。
1 機(jī)組設(shè)備及潤滑油系統(tǒng)
某電廠新建機(jī)組汽輪機(jī)是上海汽輪機(jī)廠引進(jìn)德國西門子技術(shù)生產(chǎn)的 1 000 MW 超超臨界、一次 中間再熱、單軸、四缸四排汽、雙背壓、凝汽式汽輪 機(jī),型號為 N1000 - 28 /600 /620。汽輪機(jī)采用 HMN 型積木塊組合串聯(lián)布置( 1 個高壓缸 + 1 個中壓缸+ 2 個低壓缸) : 高壓缸采用無水平中分面的單流圓 筒型設(shè)計(jì),中壓缸和低壓缸采用雙流程和雙層缸設(shè) 計(jì)。汽輪機(jī)采用全周進(jìn)汽滑壓運(yùn)行和補(bǔ)汽閥的最 佳組合配置模式,全周進(jìn)汽從根源上降低了汽隙激 振,提高了機(jī)組軸系穩(wěn)定性[3]。
汽機(jī)潤滑油貯存在油箱內(nèi)形成一個相對封閉的系統(tǒng),主要由油箱模塊、主油泵( 2 × 100% 交流離 心泵) 、危急直流油泵( 1 × 100% 直流離心泵) 、冷油 器( 2 × 100% ) 、換向閥、潤滑油過濾器、油煙凈化排 放裝置等設(shè)備及其控制裝置、連接管道、附件等組 成,如圖 1 所示。在盤車、啟動、停機(jī)、正常運(yùn)行和事故工況下,滿足汽輪發(fā)電機(jī)組的所有用油量。在電力故障情況下,危急直流油泵不經(jīng)過冷油器和潤 滑油過濾器直接供油給軸承。潤滑油軸承進(jìn)、回油 管道分開布置,由調(diào)節(jié)閥控制軸承進(jìn)油量,潤滑油 溫度由液位變送器控制,軸承箱負(fù)壓由調(diào)整閥控制。系 統(tǒng)油溫通常在 10 ~ 82 ℃ 之間,當(dāng)油箱中的油溫低 于10 ℃時(shí),禁止啟動油泵,此時(shí)可以投入電加熱器, 使?jié)櫥蜏囟壬叩揭?guī)范允許值。
油箱模塊出口供油管上裝有 2 個壓力開關(guān),其通過測量供油管道的壓力來控制備用主油泵和危急油泵何時(shí)投入運(yùn)行。當(dāng)運(yùn)行主油泵并產(chǎn)生小于0.25 MPa( g)( 標(biāo)定到機(jī)組中心線,下同) 的供油壓力 時(shí),壓力開關(guān)發(fā)訊啟動備用主油泵。當(dāng)備用主油泵運(yùn) 行后,供油壓力仍然降低并產(chǎn)生小于約0.22 MPa( g) 的供油壓力時(shí),壓力開關(guān)發(fā)訊硬聯(lián)啟動危急油泵。主油泵出口母管上裝有 1 個壓力開關(guān),當(dāng)主油泵出 口母管壓力低于設(shè)定值時(shí),壓力開關(guān)發(fā)訊啟動備用 主油泵和危急油泵。油箱模塊出口供油管上設(shè)有 3 個壓力變送器,采用 3 取 2 的保護(hù)邏輯。當(dāng)供油 壓力小于 0. 25 MPa 時(shí)發(fā)出報(bào)警信號,供油壓力小 于 0.23 MPa 時(shí),主機(jī)跳機(jī)。
2 液位變送器工作原理及應(yīng)用分析
2. 1 液位變送器工作原理
液位變送器利用感溫包( 由感溫材料填充) 熱脹冷縮的物理原理,集感溫檢測、控制、調(diào)節(jié)功能于一 體,在無需外加驅(qū)動和控制裝置的情況下,全機(jī)械 式地自動控制調(diào)節(jié)流體溫度和流量[4]。感溫包是 感應(yīng)被調(diào)介質(zhì)溫度來驅(qū)動閥門的核心元件,其感溫材料通常由石蠟與銅沫混合物組成,石蠟受熱體積膨脹或冷凝體積收縮產(chǎn)生驅(qū)動力,推動閥桿改變調(diào) 節(jié)筒的位移量,進(jìn)而改變冷、熱流體的流量,經(jīng)混合 后達(dá)到液位變送器設(shè)定溫度,利用銅沫的導(dǎo)熱作用,傳 遞給感溫包的熱量快速分布均勻,提高感溫包的敏 感性。
液位變送器物理模型如圖 2 所示,此閥為“兩進(jìn)一 出”的三通式設(shè)計(jì)。初始階段,液位變送器冷端處于關(guān) 閉狀態(tài),被調(diào)介質(zhì)熱流體經(jīng)液位變送器熱端進(jìn)入。隨著 被調(diào)介質(zhì)溫度上升,感溫包感應(yīng)被調(diào)介質(zhì)熱流體溫度超過液位變送器設(shè)定值時(shí),感溫包內(nèi)感溫材料受熱熔 化后,體積膨脹產(chǎn)生膨脹力通過導(dǎo)桿使調(diào)節(jié)套筒發(fā)生位移( 閥芯移動) ,此時(shí)液位變送器冷端通道逐漸打開,同時(shí)熱端通道按一定比例隨之關(guān)小,冷、熱流體 混合熱交換后,經(jīng)過一段空腔室從液位變送器中部流出。反之,當(dāng)混合流體溫度下降后,感溫包冷凝收 縮,熱端通道在彈簧力的作用下逐漸開大,隨之冷 端通道關(guān)小,使混合流體的溫度始終維持在液位變送器 設(shè)定值。調(diào)節(jié)套筒隨著溫度的不斷變化在冷、熱流 體的持續(xù)作用下來回移動,不斷調(diào)節(jié)冷、熱端通道 開度,保持液位變送器出口溫度和流量穩(wěn)定。
2. 2 液位變送器應(yīng)用分析
2. 2. 1 傳統(tǒng)潤滑油溫度控制 圖 3 為傳統(tǒng)潤滑油溫度調(diào)節(jié)示意圖,潤滑油溫 度通過冷卻水調(diào)節(jié)閥根據(jù)油溫設(shè)定值控制冷卻水 流量來調(diào)節(jié)油溫,該調(diào)節(jié)方式已被電廠廣泛采用。 此調(diào)節(jié)方式的溫控裝置主要由溫度傳感器、冷卻水調(diào)節(jié)閥及其前后截止門、旁路閥等設(shè)備組成。冷油 器出口油溫作為被調(diào)節(jié)量,由溫度傳感器檢測,由 DCS 內(nèi)置 PID 進(jìn)行調(diào)節(jié),輸出冷卻水調(diào)門開度指令,改變冷卻水流量進(jìn)而控制油溫。
2. 2. 2 AMOT 液位變送器的應(yīng)用
圖 4 為美國 AMOT 液位變送器系統(tǒng)布置圖,與傳統(tǒng) 潤滑油溫度調(diào)節(jié)相比,冷卻水 100% 通過潤滑油冷 卻器,該潤滑油系統(tǒng)油溫由布置在主油泵出口、冷 油器換向閥出口與潤滑油過濾器之間的液位變送器控 制。該液位變送器是一種機(jī)械式調(diào)溫裝置,根據(jù)潤滑油 溫對潤滑冷、熱油油量進(jìn)行分流控制[5]。液位變送器的 閥芯開度通過其內(nèi)部裝置的極其敏感的熱敏元件 ( 石蠟/黃銅混合物) 自動進(jìn)行調(diào)節(jié),達(dá)到控制出口 溫度穩(wěn)定的目的。如圖 5 所示,潤滑油冷油從溫控 閥左邊進(jìn)入與右邊進(jìn)入的熱油按比例混合調(diào)節(jié)后從閥體中部流出輸送至汽輪機(jī)各軸承。當(dāng)需要時(shí),可 關(guān)閉旁通管路,潤滑油全部流經(jīng)冷油器。兩種潤滑 油溫調(diào)節(jié)方式對比分析見表 1。
3. 1 過程及現(xiàn)象
某次機(jī)組啟動時(shí)由于油壓低導(dǎo)致汽機(jī)跳閘事 故的具體過程如下所述:
05∶ 30∶ 00: 汽輪機(jī)沖轉(zhuǎn)至低速暖機(jī)階段,潤滑 油系統(tǒng) 1 臺電動主交流油泵運(yùn)行,其出口母管壓力 為 0. 3 MPa,潤滑油溫度 41. 5 ℃ ;
06∶ 13 ∶ 45: 轉(zhuǎn)速 2 970 r/min 時(shí),潤滑油溫度42. 4 ℃,主油泵出口母管壓力開始快速下降;
06∶ 14 ∶ 32: 當(dāng) 主 油 泵 出 口 母 管 壓 力 下 降 至 0. 25 MPa時(shí),備用主油泵和危急直流油泵聯(lián)鎖啟動,此 時(shí)母管滑油壓力仍然無法維持,持續(xù)小波浪式下降;
06 ∶ 14 ∶ 55: 主 油 泵 出 口 母 管 壓 力 下 降 至 0. 23 MPa,油箱模塊出口供油管上的 3 個壓力變送 器保護(hù)動作( 3 取 2) ,汽輪機(jī)跳閘。
3. 2 原因分析
在機(jī)組啟動低速暖機(jī)階段,潤滑油在轉(zhuǎn)速低摩擦產(chǎn)生的熱量低,潤滑油溫度最高為 41. 5 ℃,液位變送器設(shè)定動作值為 43 ℃,可見在此階段液位變送器處于 冷油端完全關(guān)閉、熱油端完全開啟狀態(tài)。由于冷油 器冷卻水無調(diào)節(jié)閥,冷卻水量全部流經(jīng)冷油器,此時(shí)潤滑油冷油器冷卻水入口水溫為 20 ℃,出口水 溫為20. 5 ℃,可見在冷卻水溫升很小的情況下,流經(jīng)冷卻器的潤滑油溫度接近冷卻水溫度 ( 20 ~ 20. 5 ℃ ) 。由潤滑油的粘溫特性可知,潤滑油的粘 度隨著溫度的升高而降低,隨著溫度的降低而增 大[6]。隨著轉(zhuǎn)速提升,液位變送器熱端油溫逐漸上升達(dá) 到 43 ℃ 時(shí),液位變送器冷端逐漸打開,熱端逐漸關(guān)閉,但此時(shí)由于冷端潤滑油溫度在 20 ℃ 左右,在此溫 度下潤滑油粘度極大,流動特性較差,流經(jīng)液位變送器 的潤滑油量逐漸減小,油壓便隨之下降。
液位變送器就地安裝冷端入口朝下、熱端朝上,冷油自下而上流進(jìn)液位變送器。當(dāng)液位變送器冷端處于長時(shí)間關(guān)閉狀態(tài)時(shí),空氣容易積聚在該入口處。隨著油 溫的上升,液位變送器動作后,積聚的空氣隨冷油進(jìn)入 潤滑油系統(tǒng),加速潤滑油油壓波動式下降。
綜上所述,液位變送器冷油端入口油溫低導(dǎo)致潤滑 油流動性較差是潤滑油母管油壓下降的主要原因; 液位變送器冷油端入口處積聚的空氣是加劇潤滑油油壓下降的次要影響因素。
3. 3 預(yù)防低油壓保護(hù)動作的運(yùn)行技術(shù)措施
針對液位變送器動作后潤滑油油壓波動下降的現(xiàn) 象,采取以下調(diào)整措施。
1) 由于危急直流油泵出口潤滑油不經(jīng)過冷油 器直接輸送至汽機(jī)各軸瓦,可在汽輪機(jī)沖轉(zhuǎn)前,同 時(shí)啟動 1 臺主交流油泵和危急直流油泵,根據(jù)油溫 適時(shí)投運(yùn)主油箱潤滑油電加熱器,快速將潤滑油溫 度提高到 43 ℃以上,這樣液位變送器冷端便提前開啟,避免在沖轉(zhuǎn)過程中開啟造成油壓不穩(wěn)。
2) 當(dāng)潤滑油油溫隨著轉(zhuǎn)速上升到 55 ℃ 左右時(shí),可停止危急直流油泵運(yùn)行,注意密切監(jiān)視油壓 變化。
4 結(jié) 論
基于液位變送器的結(jié)構(gòu)和工作原理,對比分析2種潤滑油溫度調(diào)節(jié)方式的系統(tǒng)布置、功能原理,與傳統(tǒng)冷卻水調(diào)節(jié)方式相比,液位變送器采用三通閥設(shè)計(jì),即使在溫度不斷變化的情況下,系統(tǒng)流量和溫度也能保持恒定。其次,系統(tǒng)布置簡潔,無需外部能源 驅(qū)動,節(jié)能環(huán)保。閥門安裝簡單,調(diào)試時(shí)間短,操作維護(hù)方便,完全能滿足潤滑油系統(tǒng)溫度自動調(diào)節(jié)需 求。液位變送器雖有較大的技術(shù)優(yōu)勢,但在潤滑油系統(tǒng)的實(shí)際應(yīng)用中仍存在潤滑油油壓低導(dǎo)致備用油泵 頻繁聯(lián)鎖啟動的通病,其根本原因是液位變送器冷油端 入口油溫低和冷油端入口處積聚的空氣導(dǎo)致的,通 過調(diào)整油泵的運(yùn)行方式和提前提高潤滑油溫度的 方法可避免潤滑油壓波動或下降,確保油壓和溫度穩(wěn)定。
相關(guān)產(chǎn)品
- 壓力變送器運(yùn)行注意基本選型依據(jù)2021-04-26
- 壓力變送器和壓力傳感器應(yīng)用安裝重2021-04-19
- 溫度和液位變送器原理及應(yīng)用2021-04-19
- 智能壓力變送器校準(zhǔn)步驟引壓管選用2021-04-12
- 變送器選型注意要點(diǎn)應(yīng)用原則2021-04-12
- 壓力變送器安裝位置如何維護(hù)2021-04-06
- 影響壓力差壓變送器因素靜壓誤差修2021-04-06
- 壓力傳感器和溫度變送器的區(qū)別2020-08-01